458 research outputs found

    Scaling of thermal conductivity of helium confined in pores

    Full text link
    We have studied the thermal conductivity of confined superfluids on a bar-like geometry. We use the planar magnet lattice model on a lattice H×H×LH\times H\times L with L≫HL \gg H. We have applied open boundary conditions on the bar sides (the confined directions of length HH) and periodic along the long direction. We have adopted a hybrid Monte Carlo algorithm to efficiently deal with the critical slowing down and in order to solve the dynamical equations of motion we use a discretization technique which introduces errors only O((δt)6)O((\delta t)^6) in the time step δt\delta t. Our results demonstrate the validity of scaling using known values of the critical exponents and we obtained the scaling function of the thermal resistivity. We find that our results for the thermal resistivity scaling function are in very good agreement with the available experimental results for pores using the tempComment: 5 two-column pages, 3 figures, Revtex

    Five-loop additive renormalization in the phi^4 theory and amplitude functions of the minimally renormalized specific heat in three dimensions

    Full text link
    We present an analytic five-loop calculation for the additive renormalization constant A(u,epsilon) and the associated renormalization-group function B(u) of the specific heat of the O(n) symmetric phi^4 theory within the minimal subtraction scheme. We show that this calculation does not require new five-loop integrations but can be performed on the basis of the previous five-loop calculation of the four-point vertex function combined with an appropriate identification of symmetry factors of vacuum diagrams. We also determine the amplitude functions of the specific heat in three dimensions for n=1,2,3 above T_c and for n=1 below T_c up to five-loop order. Accurate results are obtained from Borel resummations of B(u) for n=1,2,3 and of the amplitude functions for n=1. Previous conjectures regarding the smallness of the resummed higher-order contributions are confirmed. Borel resummed universal amplitude ratios A^+/A^- and a_c^+/a_c^- are calculated for n=1.Comment: 30 pages REVTeX, 3 PostScript figures, submitted to Phys. Rev.

    On the Spatial Distribution of Stellar Populations in the Large Magellanic Cloud

    Get PDF
    We measure the angular correlation function of stars in a region of the Large Magellanic Cloud (LMC) that spans 2 degrees by 1.5 degrees. We find that the correlation functions of stellar populations are represented well by exponential functions of the angular separation for separations between 2 and 40 arcmin (corresponding to ~ 30 pc and 550 pc for an LMC distance of 50 kpc). The inner boundary is set by the presence of distinct, highly correlated structures, which are the more familiar stellar clusters, and the outer boundary is set by the observed region's size and the presence of two principal centers of star formation within the region. We also find that the normalization and scale length of the correlation function changes systematically with the mean age of the stellar population. The existence of positive correlation at large separations (~300 pc), even in the youngest population, argues for large-scale hierarchical structure in current star formation. The evolution of the angular correlation toward lower normalizations and longer scale lengths with stellar age argues for the dispersion of stars with time. We show that a simple, stochastic, self-propagating star formation model is qualitatively consistent with this behavior of the correlation function.Comment: 30 pages, 13 Figures. Scheduled for publication in AJ in June 199

    Liquid 4He near the superfluid transition in the presence of a heat current and gravity

    Full text link
    The effects of a heat current and gravity in liquid 4He near the superfluid transition are investigated for temperatures above and below T_lambda. We present a renormalization-group calculation based on model F for the Green's function in a self-consistent approximation which in quantum many-particle theory is known as the Hartree approximation. The approach can handle a zero average order parameter above and below T_lambda and includes effects of vortices. We calculate the thermal conductivity and the specific heat for all temperatures T and heat currents Q in the critical regime. Furthermore, we calculate the temperature profile. Below T_lambda we find a second correlation length which describes the dephasing of the order parameter field due to vortices. We find dissipation and mutual friction of the superfluid-normal fluid counterflow and calculate the Gorter-Mellink coefficient A. We compare our theoretical results with recent experiments.Comment: 26 pages, 9 figure

    Toward an understanding of risk factors for anorexia nervosa: A case-control study

    Get PDF
    Prospective, longitudinal studies of risk factors for anorexia nervosa (AN) are lacking and existing cross-sectional studies are generally narrow in focus and lack methodological rigor. Building on two studies that used the Oxford Risk Factor Interview (RFI) to establish time precedence and comprehensively assess potential risk correlates for AN, the present study advances this line of research and represents the first case-control study of risk factors for AN in the USA

    Fisher Renormalization for Logarithmic Corrections

    Get PDF
    For continuous phase transitions characterized by power-law divergences, Fisher renormalization prescribes how to obtain the critical exponents for a system under constraint from their ideal counterparts. In statistical mechanics, such ideal behaviour at phase transitions is frequently modified by multiplicative logarithmic corrections. Here, Fisher renormalization for the exponents of these logarithms is developed in a general manner. As for the leading exponents, Fisher renormalization at the logarithmic level is seen to be involutory and the renormalized exponents obey the same scaling relations as their ideal analogs. The scheme is tested in lattice animals and the Yang-Lee problem at their upper critical dimensions, where predictions for logarithmic corrections are made.Comment: 10 pages, no figures. Version 2 has added reference

    Scaling of the specific heat in superfluid films

    Full text link
    We study the specific heat of the x−yx-y model on lattices L×L×HL \times L \times H with L≫HL \gg H (i.e. on lattices representing a film geometry) using the Cluster Monte--Carlo method. In the HH--direction we apply Dirichlet boundary conditions so that the order parameter in the top and bottom layers is zero. We find that our results for the specific heat of various thickness size HH collapse on the same universal scaling function. The extracted scaling function of the specific heat is in good agreement with the experimentally determined universal scaling function using no free parameters.Comment: 4 pages, uuencoded compressed PostScrip

    A Near-Infrared Stellar Census of the Blue Compact Dwarf Galaxy VII~Zw~403

    Full text link
    We present near-infrared single-star photometry for the low-metallicity Blue Compact Dwarf galaxy VII~Zw~403. We achieve limiting magnitudes of F110W~≈\approx~25.5 and F160W~≈\approx~24.5 using one of the NICMOS cameras with the HST equivalents of the ground-based J and H filters. The data have a high photometric precision (0.1 mag) and are >95>95% complete down to magnitudes of about 23, far deeper than previous ground-based studies in the near-IR. The color-magnitude diagram contains about 1000 point sources. We provide a preliminary transformation of the near-IR photometry into the ground system...Comment: Accepted for publication by the AJ, preprint has 49 pages, 2 tables, and 16 figure

    Singularity in the boundary resistance between superfluid 4^4He and a solid surface

    Full text link
    We report new measurements in four cells of the thermal boundary resistance RR between copper and 4^4He below but near the superfluid-transition temperature TλT_\lambda. For 10−7≤t≡1−T/Tλ≤10−410^{-7} \leq t \equiv 1 - T/T_\lambda \leq 10^{-4} fits of R=R0txb+B0R = R_0 t^{x_b} + B_0 to the data yielded xb≃0.18x_b \simeq 0.18, whereas a fit to theoretical values based on the renormalization-group theory yielded xb=0.23x_b = 0.23. Alternatively, a good fit of the theory to the data could be obtained if the {\it amplitude} of the prediction was reduced by a factor close to two. The results raise the question whether the boundary conditions used in the theory should be modified.Comment: 4 pages, 4 figures, revte
    • …
    corecore